2004-12-17 Randolph Chung <tausq@debian.org>
* hppa-hpux-tdep.c (IS_32BIT_TARGET): New. (in_opd_section): New. (hppa32_hpux_find_global_pointer): Rename from hppa_hpux_som_find_global_pointer. (hppa64_hpux_find_global_pointer): New. (ldsid_pattern): New. (hppa_hpux_search_pattern): New. (hppa32_hpux_search_dummy_call_sequence): New. (hppa64_hpux_search_dummy_call_sequence): New. (hppa_hpux_find_import_stub_for_addr): New. (hppa_hpux_sr_for_addr): New. (hppa_hpux_find_dummy_bpaddr): New. (hppa_hpux_init_abi): Use IS_32BIT_TARGET predicate. (hppa_hpux_som_init_abi): Set find_global_pointer method to hppa32_hpux_find_global_pointer instead of hppa_hpux_som_find_global_pointer. (hppa_hpux_elf_init_abi): Set find_global_pointer method. * hppa-tdep.c (hppa_init_objfile_priv_data): New. (read_unwind_info): Use function to initialize objfile-private data. (hppa32_push_dummy_call): Don't automatically set the RP if there is a push_dummy_code method. (hppa64_push_dummy_call): Retrieve and set the global pointer. Don't automatically set the RP if there is a push_dummy_code method. * hppa-tdep.h (hppa_objfile_private): Add dummy_call_sequence_reg and dummy_call_sequence_addr members. (hppa_init_objfile_priv_data): New prototype.
This commit is contained in:
parent
e3070fef41
commit
77d18ded6e
4 changed files with 531 additions and 143 deletions
|
@ -1,3 +1,32 @@
|
|||
2004-12-17 Randolph Chung <tausq@debian.org>
|
||||
|
||||
* hppa-hpux-tdep.c (IS_32BIT_TARGET): New.
|
||||
(in_opd_section): New.
|
||||
(hppa32_hpux_find_global_pointer): Rename from
|
||||
hppa_hpux_som_find_global_pointer.
|
||||
(hppa64_hpux_find_global_pointer): New.
|
||||
(ldsid_pattern): New.
|
||||
(hppa_hpux_search_pattern): New.
|
||||
(hppa32_hpux_search_dummy_call_sequence): New.
|
||||
(hppa64_hpux_search_dummy_call_sequence): New.
|
||||
(hppa_hpux_find_import_stub_for_addr): New.
|
||||
(hppa_hpux_sr_for_addr): New.
|
||||
(hppa_hpux_find_dummy_bpaddr): New.
|
||||
(hppa_hpux_init_abi): Use IS_32BIT_TARGET predicate.
|
||||
(hppa_hpux_som_init_abi): Set find_global_pointer method to
|
||||
hppa32_hpux_find_global_pointer instead of
|
||||
hppa_hpux_som_find_global_pointer.
|
||||
(hppa_hpux_elf_init_abi): Set find_global_pointer method.
|
||||
* hppa-tdep.c (hppa_init_objfile_priv_data): New.
|
||||
(read_unwind_info): Use function to initialize objfile-private data.
|
||||
(hppa32_push_dummy_call): Don't automatically set the RP if there is
|
||||
a push_dummy_code method.
|
||||
(hppa64_push_dummy_call): Retrieve and set the global pointer.
|
||||
Don't automatically set the RP if there is a push_dummy_code method.
|
||||
* hppa-tdep.h (hppa_objfile_private): Add dummy_call_sequence_reg and
|
||||
dummy_call_sequence_addr members.
|
||||
(hppa_init_objfile_priv_data): New prototype.
|
||||
|
||||
2004-12-17 Joel Brobecker <brobecker@gnat.com>
|
||||
|
||||
* hppa-tdep.c (hppa_lookup_stub_minimal_symbol): New function.
|
||||
|
|
|
@ -45,6 +45,9 @@
|
|||
#define offsetof(TYPE, MEMBER) ((unsigned long) &((TYPE *)0)->MEMBER)
|
||||
#endif
|
||||
|
||||
#define IS_32BIT_TARGET(_gdbarch) \
|
||||
((gdbarch_tdep (_gdbarch))->bytes_per_address == 4)
|
||||
|
||||
/* Forward declarations. */
|
||||
extern void _initialize_hppa_hpux_tdep (void);
|
||||
extern initialize_file_ftype _initialize_hppa_hpux_tdep;
|
||||
|
@ -57,6 +60,20 @@ typedef struct
|
|||
}
|
||||
args_for_find_stub;
|
||||
|
||||
static int
|
||||
in_opd_section (CORE_ADDR pc)
|
||||
{
|
||||
struct obj_section *s;
|
||||
int retval = 0;
|
||||
|
||||
s = find_pc_section (pc);
|
||||
|
||||
retval = (s != NULL
|
||||
&& s->the_bfd_section->name != NULL
|
||||
&& strcmp (s->the_bfd_section->name, ".opd") == 0);
|
||||
return (retval);
|
||||
}
|
||||
|
||||
/* Return one if PC is in the call path of a trampoline, else return zero.
|
||||
|
||||
Note we return one for *any* call trampoline (long-call, arg-reloc), not
|
||||
|
@ -1229,7 +1246,7 @@ hppa_hpux_sigtramp_unwind_sniffer (struct frame_info *next_frame)
|
|||
}
|
||||
|
||||
static CORE_ADDR
|
||||
hppa_hpux_som_find_global_pointer (struct value *function)
|
||||
hppa32_hpux_find_global_pointer (struct value *function)
|
||||
{
|
||||
CORE_ADDR faddr;
|
||||
|
||||
|
@ -1252,84 +1269,244 @@ hppa_hpux_som_find_global_pointer (struct value *function)
|
|||
}
|
||||
|
||||
static CORE_ADDR
|
||||
hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
|
||||
CORE_ADDR funcaddr, int using_gcc,
|
||||
struct value **args, int nargs,
|
||||
struct type *value_type,
|
||||
CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
|
||||
hppa64_hpux_find_global_pointer (struct value *function)
|
||||
{
|
||||
/* FIXME: tausq/2004-06-09: This needs much more testing. It is broken
|
||||
for pa64, but we should be able to get it to work with a little bit
|
||||
of work. gdb-6.1 has a lot of code to handle various cases; I've tried to
|
||||
simplify it and avoid compile-time conditionals. */
|
||||
CORE_ADDR faddr;
|
||||
char buf[32];
|
||||
|
||||
/* On HPUX, functions in the main executable and in libraries can be located
|
||||
in different spaces. In order for us to be able to select the right
|
||||
space for the function call, we need to go through an instruction seqeunce
|
||||
to select the right space for the target function, call it, and then
|
||||
restore the space on return.
|
||||
faddr = value_as_address (function);
|
||||
|
||||
There are two helper routines that can be used for this task -- if
|
||||
an application is linked with gcc, it will contain a __gcc_plt_call
|
||||
helper function. __gcc_plt_call, when passed the entry point of an
|
||||
import stub, will do the necessary space setting/restoration for the
|
||||
target function.
|
||||
if (in_opd_section (faddr))
|
||||
{
|
||||
target_read_memory (faddr, buf, sizeof (buf));
|
||||
return extract_unsigned_integer (&buf[24], 8);
|
||||
}
|
||||
else
|
||||
{
|
||||
return gdbarch_tdep (current_gdbarch)->solib_get_got_by_pc (faddr);
|
||||
}
|
||||
}
|
||||
|
||||
For programs that are compiled/linked with the HP compiler, a similar
|
||||
function called __d_plt_call exists; __d_plt_call expects a PLABEL instead
|
||||
of an import stub as an argument.
|
||||
static unsigned int ldsid_pattern[] = {
|
||||
0x000010a0, /* ldsid (rX),rY */
|
||||
0x00001820, /* mtsp rY,sr0 */
|
||||
0xe0000000 /* be,n (sr0,rX) */
|
||||
};
|
||||
|
||||
// *INDENT-OFF*
|
||||
To summarize, the call flow is:
|
||||
current function -> dummy frame -> __gcc_plt_call (import stub)
|
||||
-> target function
|
||||
or
|
||||
current function -> dummy frame -> __d_plt_call (plabel)
|
||||
-> target function
|
||||
// *INDENT-ON*
|
||||
static CORE_ADDR
|
||||
hppa_hpux_search_pattern (CORE_ADDR start, CORE_ADDR end,
|
||||
unsigned int *patterns, int count)
|
||||
{
|
||||
unsigned int *buf;
|
||||
int offset, i;
|
||||
int region, insns;
|
||||
|
||||
In general the "funcaddr" argument passed to push_dummy_code is the actual
|
||||
entry point of the target function. For __gcc_plt_call, we need to
|
||||
locate the import stub for the corresponding function. Failing that,
|
||||
we construct a dummy "import stub" on the stack to pass as an argument.
|
||||
For __d_plt_call, we similarly synthesize a PLABEL on the stack to
|
||||
pass to the helper function.
|
||||
region = end - start + 4;
|
||||
insns = region / 4;
|
||||
buf = (unsigned int *) alloca (region);
|
||||
|
||||
An additional twist is that, in order for us to restore the space register
|
||||
to its starting state, we need __gcc_plt_call/__d_plt_call to return
|
||||
to the instruction where we started the call. However, if we put
|
||||
the breakpoint there, gdb will complain because it will find two
|
||||
frames on the stack with the same (sp, pc) (with the dummy frame in
|
||||
between). Currently, we set the return pointer to (pc - 4) of the
|
||||
current function. FIXME: This is not an ideal solution; possibly if the
|
||||
current pc is at the beginning of a page, this will cause a page fault.
|
||||
Need to understand this better and figure out a better way to fix it. */
|
||||
read_memory (start, (char *) buf, region);
|
||||
|
||||
struct minimal_symbol *sym;
|
||||
for (i = 0; i < insns; i++)
|
||||
buf[i] = extract_unsigned_integer (&buf[i], 4);
|
||||
|
||||
/* Nonzero if we will use GCC's PLT call routine. This routine must be
|
||||
passed an import stub, not a PLABEL. It is also necessary to get %r19
|
||||
before performing the call. (This is done by push_dummy_call.) */
|
||||
int use_gcc_plt_call = 1;
|
||||
for (offset = 0; offset <= insns - count; offset++)
|
||||
{
|
||||
for (i = 0; i < count; i++)
|
||||
{
|
||||
if ((buf[offset + i] & patterns[i]) != patterns[i])
|
||||
break;
|
||||
}
|
||||
if (i == count)
|
||||
break;
|
||||
}
|
||||
|
||||
/* See if __gcc_plt_call is available; if not we will use the HP version
|
||||
instead. */
|
||||
sym = lookup_minimal_symbol ("__gcc_plt_call", NULL, NULL);
|
||||
if (sym == NULL)
|
||||
use_gcc_plt_call = 0;
|
||||
if (offset <= insns - count)
|
||||
return start + offset * 4;
|
||||
else
|
||||
return 0;
|
||||
}
|
||||
|
||||
/* If using __gcc_plt_call, we need to make sure we pass in an import
|
||||
stub. funcaddr can be pointing to an export stub or a real function,
|
||||
so we try to resolve it to the import stub. */
|
||||
if (use_gcc_plt_call)
|
||||
static CORE_ADDR
|
||||
hppa32_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
|
||||
int *argreg)
|
||||
{
|
||||
struct objfile *obj;
|
||||
struct obj_section *sec;
|
||||
struct hppa_objfile_private *priv;
|
||||
struct frame_info *frame;
|
||||
struct unwind_table_entry *u;
|
||||
CORE_ADDR addr, rp;
|
||||
char buf[4];
|
||||
unsigned int insn;
|
||||
|
||||
sec = find_pc_section (pc);
|
||||
obj = sec->objfile;
|
||||
priv = objfile_data (obj, hppa_objfile_priv_data);
|
||||
|
||||
if (!priv)
|
||||
priv = hppa_init_objfile_priv_data (obj);
|
||||
if (!priv)
|
||||
error ("Internal error creating objfile private data.\n");
|
||||
|
||||
/* Use the cached value if we have one. */
|
||||
if (priv->dummy_call_sequence_addr != 0)
|
||||
{
|
||||
*argreg = priv->dummy_call_sequence_reg;
|
||||
return priv->dummy_call_sequence_addr;
|
||||
}
|
||||
|
||||
/* First try a heuristic; if we are in a shared library call, our return
|
||||
pointer is likely to point at an export stub. */
|
||||
frame = get_current_frame ();
|
||||
rp = frame_unwind_register_unsigned (frame, 2);
|
||||
u = find_unwind_entry (rp);
|
||||
if (u && u->stub_unwind.stub_type == EXPORT)
|
||||
{
|
||||
addr = hppa_hpux_search_pattern (u->region_start, u->region_end,
|
||||
ldsid_pattern,
|
||||
ARRAY_SIZE (ldsid_pattern));
|
||||
if (addr)
|
||||
goto found_pattern;
|
||||
}
|
||||
|
||||
/* Next thing to try is to look for an export stub. */
|
||||
if (priv->unwind_info)
|
||||
{
|
||||
int i;
|
||||
|
||||
for (i = 0; i < priv->unwind_info->last; i++)
|
||||
{
|
||||
struct unwind_table_entry *u;
|
||||
u = &priv->unwind_info->table[i];
|
||||
if (u->stub_unwind.stub_type == EXPORT)
|
||||
{
|
||||
addr = hppa_hpux_search_pattern (u->region_start, u->region_end,
|
||||
ldsid_pattern,
|
||||
ARRAY_SIZE (ldsid_pattern));
|
||||
if (addr)
|
||||
{
|
||||
goto found_pattern;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Finally, if this is the main executable, try to locate a sequence
|
||||
from noshlibs */
|
||||
addr = hppa_symbol_address ("noshlibs");
|
||||
sec = find_pc_section (addr);
|
||||
|
||||
if (sec && sec->objfile == obj)
|
||||
{
|
||||
CORE_ADDR start, end;
|
||||
|
||||
find_pc_partial_function (addr, NULL, &start, &end);
|
||||
if (start != 0 && end != 0)
|
||||
{
|
||||
addr = hppa_hpux_search_pattern (start, end, ldsid_pattern,
|
||||
ARRAY_SIZE (ldsid_pattern));
|
||||
if (addr)
|
||||
goto found_pattern;
|
||||
}
|
||||
}
|
||||
|
||||
/* Can't find a suitable sequence. */
|
||||
return 0;
|
||||
|
||||
found_pattern:
|
||||
target_read_memory (addr, buf, sizeof (buf));
|
||||
insn = extract_unsigned_integer (buf, sizeof (buf));
|
||||
priv->dummy_call_sequence_addr = addr;
|
||||
priv->dummy_call_sequence_reg = (insn >> 21) & 0x1f;
|
||||
|
||||
*argreg = priv->dummy_call_sequence_reg;
|
||||
return priv->dummy_call_sequence_addr;
|
||||
}
|
||||
|
||||
static CORE_ADDR
|
||||
hppa64_hpux_search_dummy_call_sequence (struct gdbarch *gdbarch, CORE_ADDR pc,
|
||||
int *argreg)
|
||||
{
|
||||
struct objfile *obj;
|
||||
struct obj_section *sec;
|
||||
struct hppa_objfile_private *priv;
|
||||
CORE_ADDR addr;
|
||||
struct minimal_symbol *msym;
|
||||
int i;
|
||||
|
||||
sec = find_pc_section (pc);
|
||||
obj = sec->objfile;
|
||||
priv = objfile_data (obj, hppa_objfile_priv_data);
|
||||
|
||||
if (!priv)
|
||||
priv = hppa_init_objfile_priv_data (obj);
|
||||
if (!priv)
|
||||
error ("Internal error creating objfile private data.\n");
|
||||
|
||||
/* Use the cached value if we have one. */
|
||||
if (priv->dummy_call_sequence_addr != 0)
|
||||
{
|
||||
*argreg = priv->dummy_call_sequence_reg;
|
||||
return priv->dummy_call_sequence_addr;
|
||||
}
|
||||
|
||||
/* FIXME: Without stub unwind information, locating a suitable sequence is
|
||||
fairly difficult. For now, we implement a very naive and inefficient
|
||||
scheme; try to read in blocks of code, and look for a "bve,n (rp)"
|
||||
instruction. These are likely to occur at the end of functions, so
|
||||
we only look at the last two instructions of each function. */
|
||||
for (i = 0, msym = obj->msymbols; i < obj->minimal_symbol_count; i++, msym++)
|
||||
{
|
||||
CORE_ADDR begin, end;
|
||||
char *name;
|
||||
unsigned int insns[2];
|
||||
int offset;
|
||||
|
||||
find_pc_partial_function (SYMBOL_VALUE_ADDRESS (msym), &name,
|
||||
&begin, &end);
|
||||
|
||||
if (*name == 0 || begin == 0 || end == 0)
|
||||
continue;
|
||||
|
||||
if (target_read_memory (end - sizeof (insns), (char *)insns, sizeof (insns)) == 0)
|
||||
{
|
||||
for (offset = 0; offset < ARRAY_SIZE (insns); offset++)
|
||||
{
|
||||
unsigned int insn;
|
||||
|
||||
insn = extract_unsigned_integer (&insns[offset], 4);
|
||||
if (insn == 0xe840d002) /* bve,n (rp) */
|
||||
{
|
||||
addr = (end - sizeof (insns)) + (offset * 4);
|
||||
goto found_pattern;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/* Can't find a suitable sequence. */
|
||||
return 0;
|
||||
|
||||
found_pattern:
|
||||
priv->dummy_call_sequence_addr = addr;
|
||||
/* Right now we only look for a "bve,l (rp)" sequence, so the register is
|
||||
always HPPA_RP_REGNUM. */
|
||||
priv->dummy_call_sequence_reg = HPPA_RP_REGNUM;
|
||||
|
||||
*argreg = priv->dummy_call_sequence_reg;
|
||||
return priv->dummy_call_sequence_addr;
|
||||
}
|
||||
|
||||
static CORE_ADDR
|
||||
hppa_hpux_find_import_stub_for_addr (CORE_ADDR funcaddr)
|
||||
{
|
||||
struct objfile *objfile;
|
||||
struct minimal_symbol *funsym, *stubsym;
|
||||
CORE_ADDR stubaddr = 0;
|
||||
CORE_ADDR stubaddr;
|
||||
|
||||
funsym = lookup_minimal_symbol_by_pc (funcaddr);
|
||||
if (!funsym)
|
||||
error ("Unable to find symbol for target function.\n");
|
||||
stubaddr = 0;
|
||||
|
||||
ALL_OBJFILES (objfile)
|
||||
{
|
||||
|
@ -1356,65 +1533,220 @@ hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
|
|||
}
|
||||
}
|
||||
|
||||
if (stubaddr != 0)
|
||||
return stubaddr;
|
||||
}
|
||||
|
||||
static int
|
||||
hppa_hpux_sr_for_addr (CORE_ADDR addr)
|
||||
{
|
||||
/* Argument to __gcc_plt_call is passed in r22. */
|
||||
regcache_cooked_write_unsigned (current_regcache, 22, stubaddr);
|
||||
int sr;
|
||||
/* The space register to use is encoded in the top 2 bits of the address. */
|
||||
sr = addr >> (gdbarch_tdep (current_gdbarch)->bytes_per_address * 8 - 2);
|
||||
return sr + 4;
|
||||
}
|
||||
else
|
||||
|
||||
static CORE_ADDR
|
||||
hppa_hpux_find_dummy_bpaddr (CORE_ADDR addr)
|
||||
{
|
||||
/* No import stub found; let's synthesize one. */
|
||||
/* In order for us to restore the space register to its starting state,
|
||||
we need the dummy trampoline to return to the an instruction address in
|
||||
the same space as where we started the call. We used to place the
|
||||
breakpoint near the current pc, however, this breaks nested dummy calls
|
||||
as the nested call will hit the breakpoint address and terminate
|
||||
prematurely. Instead, we try to look for an address in the same space to
|
||||
put the breakpoint.
|
||||
|
||||
/* ldsid %r21, %r1 */
|
||||
write_memory_unsigned_integer (sp, 4, 0x02a010a1);
|
||||
/* mtsp %r1,%sr0 */
|
||||
write_memory_unsigned_integer (sp + 4, 4, 0x00011820);
|
||||
/* be 0(%sr0, %r21) */
|
||||
write_memory_unsigned_integer (sp + 8, 4, 0xe2a00000);
|
||||
/* nop */
|
||||
write_memory_unsigned_integer (sp + 12, 4, 0x08000240);
|
||||
This is similar in spirit to putting the breakpoint at the "entry point"
|
||||
of an executable. */
|
||||
|
||||
regcache_cooked_write_unsigned (current_regcache, 21, funcaddr);
|
||||
regcache_cooked_write_unsigned (current_regcache, 22, sp);
|
||||
}
|
||||
struct obj_section *sec;
|
||||
struct unwind_table_entry *u;
|
||||
struct minimal_symbol *msym;
|
||||
CORE_ADDR func;
|
||||
int i;
|
||||
|
||||
/* We set the breakpoint address and r31 to (close to) where the current
|
||||
pc is; when __gcc_plt_call returns, it will restore pcsqh to the
|
||||
current value based on this. The -4 is needed for frame unwinding
|
||||
to work properly -- we need to land in a different function than
|
||||
the current function. */
|
||||
*bp_addr = (read_register (HPPA_PCOQ_HEAD_REGNUM) & ~3) - 4;
|
||||
regcache_cooked_write_unsigned (current_regcache, 31, *bp_addr);
|
||||
|
||||
/* Continue from __gcc_plt_call. */
|
||||
*real_pc = SYMBOL_VALUE (sym);
|
||||
}
|
||||
else
|
||||
sec = find_pc_section (addr);
|
||||
if (sec)
|
||||
{
|
||||
ULONGEST gp;
|
||||
/* First try the lowest address in the section; we can use it as long
|
||||
as it is "regular" code (i.e. not a stub) */
|
||||
u = find_unwind_entry (sec->addr);
|
||||
if (!u || u->stub_unwind.stub_type == 0)
|
||||
return sec->addr;
|
||||
|
||||
/* Use __d_plt_call as a fallback; __d_plt_call expects to be called
|
||||
with a plabel, so we need to build one. */
|
||||
/* Otherwise, we need to find a symbol for a regular function. We
|
||||
do this by walking the list of msymbols in the objfile. The symbol
|
||||
we find should not be the same as the function that was passed in. */
|
||||
|
||||
sym = lookup_minimal_symbol ("__d_plt_call", NULL, NULL);
|
||||
if (sym == NULL)
|
||||
error("Can't find an address for __d_plt_call or __gcc_plt_call "
|
||||
"trampoline\nSuggest linking executable with -g or compiling "
|
||||
"with gcc.");
|
||||
/* FIXME: this is broken, because we can find a function that will be
|
||||
called by the dummy call target function, which will still not
|
||||
work. */
|
||||
|
||||
gp = gdbarch_tdep (gdbarch)->find_global_pointer (funcaddr);
|
||||
write_memory_unsigned_integer (sp, 4, funcaddr);
|
||||
write_memory_unsigned_integer (sp + 4, 4, gp);
|
||||
|
||||
/* plabel is passed in r22 */
|
||||
regcache_cooked_write_unsigned (current_regcache, 22, sp);
|
||||
find_pc_partial_function (addr, NULL, &func, NULL);
|
||||
for (i = 0, msym = sec->objfile->msymbols;
|
||||
i < sec->objfile->minimal_symbol_count;
|
||||
i++, msym++)
|
||||
{
|
||||
u = find_unwind_entry (SYMBOL_VALUE_ADDRESS (msym));
|
||||
if (func != SYMBOL_VALUE_ADDRESS (msym)
|
||||
&& (!u || u->stub_unwind.stub_type == 0))
|
||||
return SYMBOL_VALUE_ADDRESS (msym);
|
||||
}
|
||||
}
|
||||
|
||||
/* Pushed one stack frame, which has to be 64-byte aligned. */
|
||||
sp += 64;
|
||||
warning ("Cannot find suitable address to place dummy breakpoint; nested "
|
||||
"calls may fail.\n");
|
||||
return addr - 4;
|
||||
}
|
||||
|
||||
static CORE_ADDR
|
||||
hppa_hpux_push_dummy_code (struct gdbarch *gdbarch, CORE_ADDR sp,
|
||||
CORE_ADDR funcaddr, int using_gcc,
|
||||
struct value **args, int nargs,
|
||||
struct type *value_type,
|
||||
CORE_ADDR *real_pc, CORE_ADDR *bp_addr)
|
||||
{
|
||||
CORE_ADDR pc, stubaddr;
|
||||
int argreg;
|
||||
|
||||
pc = read_pc ();
|
||||
|
||||
/* Note: we don't want to pass a function descriptor here; push_dummy_call
|
||||
fills in the PIC register for us. */
|
||||
funcaddr = gdbarch_convert_from_func_ptr_addr (gdbarch, funcaddr, NULL);
|
||||
|
||||
/* The simple case is where we call a function in the same space that we are
|
||||
currently in; in that case we don't really need to do anything. */
|
||||
if (hppa_hpux_sr_for_addr (pc) == hppa_hpux_sr_for_addr (funcaddr))
|
||||
{
|
||||
/* Intraspace call. */
|
||||
*bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
|
||||
*real_pc = funcaddr;
|
||||
regcache_cooked_write_unsigned (current_regcache, HPPA_RP_REGNUM, *bp_addr);
|
||||
|
||||
return sp;
|
||||
}
|
||||
|
||||
/* In order to make an interspace call, we need to go through a stub.
|
||||
gcc supplies an appropriate stub called "__gcc_plt_call", however, if
|
||||
an application is compiled with HP compilers then this stub is not
|
||||
available. We used to fallback to "__d_plt_call", however that stub
|
||||
is not entirely useful for us because it doesn't do an interspace
|
||||
return back to the caller. Also, on hppa64-hpux, there is no
|
||||
__gcc_plt_call available. In order to keep the code uniform, we
|
||||
instead don't use either of these stubs, but instead write our own
|
||||
onto the stack.
|
||||
|
||||
A problem arises since the stack is located in a different space than
|
||||
code, so in order to branch to a stack stub, we will need to do an
|
||||
interspace branch. Previous versions of gdb did this by modifying code
|
||||
at the current pc and doing single-stepping to set the pcsq. Since this
|
||||
is highly undesirable, we use a different scheme:
|
||||
|
||||
All we really need to do the branch to the stub is a short instruction
|
||||
sequence like this:
|
||||
|
||||
PA1.1:
|
||||
ldsid (rX),r1
|
||||
mtsp r1,sr0
|
||||
be,n (sr0,rX)
|
||||
|
||||
PA2.0:
|
||||
bve,n (sr0,rX)
|
||||
|
||||
Instead of writing these sequences ourselves, we can find it in
|
||||
the instruction stream that belongs to the current space. While this
|
||||
seems difficult at first, we are actually guaranteed to find the sequences
|
||||
in several places:
|
||||
|
||||
For 32-bit code:
|
||||
- in export stubs for shared libraries
|
||||
- in the "noshlibs" routine in the main module
|
||||
|
||||
For 64-bit code:
|
||||
- at the end of each "regular" function
|
||||
|
||||
We cache the address of these sequences in the objfile's private data
|
||||
since these operations can potentially be quite expensive.
|
||||
|
||||
So, what we do is:
|
||||
- write a stack trampoline
|
||||
- look for a suitable instruction sequence in the current space
|
||||
- point the sequence at the trampoline
|
||||
- set the return address of the trampoline to the current space
|
||||
(see hppa_hpux_find_dummy_call_bpaddr)
|
||||
- set the continuing address of the "dummy code" as the sequence.
|
||||
|
||||
*/
|
||||
|
||||
if (IS_32BIT_TARGET (gdbarch))
|
||||
{
|
||||
static unsigned int hppa32_tramp[] = {
|
||||
0x0fdf1291, /* stw r31,-8(,sp) */
|
||||
0x02c010a1, /* ldsid (,r22),r1 */
|
||||
0x00011820, /* mtsp r1,sr0 */
|
||||
0xe6c00000, /* be,l 0(sr0,r22),%sr0,%r31 */
|
||||
0x081f0242, /* copy r31,rp */
|
||||
0x0fd11082, /* ldw -8(,sp),rp */
|
||||
0x004010a1, /* ldsid (,rp),r1 */
|
||||
0x00011820, /* mtsp r1,sr0 */
|
||||
0xe0400000, /* be 0(sr0,rp) */
|
||||
0x08000240 /* nop */
|
||||
};
|
||||
|
||||
/* for hppa32, we must call the function through a stub so that on
|
||||
return it can return to the space of our trampoline. */
|
||||
stubaddr = hppa_hpux_find_import_stub_for_addr (funcaddr);
|
||||
if (stubaddr == 0)
|
||||
error ("Cannot call external function not referenced by application "
|
||||
"(no import stub).\n");
|
||||
regcache_cooked_write_unsigned (current_regcache, 22, stubaddr);
|
||||
|
||||
write_memory (sp, (char *)&hppa32_tramp, sizeof (hppa32_tramp));
|
||||
|
||||
*bp_addr = hppa_hpux_find_dummy_bpaddr (pc);
|
||||
regcache_cooked_write_unsigned (current_regcache, 31, *bp_addr);
|
||||
|
||||
*real_pc = hppa32_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
|
||||
if (*real_pc == 0)
|
||||
error ("Cannot make interspace call from here.\n");
|
||||
|
||||
regcache_cooked_write_unsigned (current_regcache, argreg, sp);
|
||||
|
||||
sp += sizeof (hppa32_tramp);
|
||||
}
|
||||
else
|
||||
{
|
||||
static unsigned int hppa64_tramp[] = {
|
||||
0xeac0f000, /* bve,l (r22),%r2 */
|
||||
0x0fdf12d1, /* std r31,-8(,sp) */
|
||||
0x0fd110c2, /* ldd -8(,sp),rp */
|
||||
0xe840d002, /* bve,n (rp) */
|
||||
0x08000240 /* nop */
|
||||
};
|
||||
|
||||
/* for hppa64, we don't need to call through a stub; all functions
|
||||
return via a bve. */
|
||||
regcache_cooked_write_unsigned (current_regcache, 22, funcaddr);
|
||||
write_memory (sp, (char *)&hppa64_tramp, sizeof (hppa64_tramp));
|
||||
|
||||
*bp_addr = pc - 4;
|
||||
regcache_cooked_write_unsigned (current_regcache, 31, *bp_addr);
|
||||
|
||||
*real_pc = hppa64_hpux_search_dummy_call_sequence (gdbarch, pc, &argreg);
|
||||
if (*real_pc == 0)
|
||||
error ("Cannot make interspace call from here.\n");
|
||||
|
||||
regcache_cooked_write_unsigned (current_regcache, argreg, sp);
|
||||
|
||||
sp += sizeof (hppa64_tramp);
|
||||
}
|
||||
|
||||
sp = gdbarch_frame_align (gdbarch, sp);
|
||||
|
||||
return sp;
|
||||
}
|
||||
|
||||
|
||||
|
||||
/* Bit in the `ss_flag' member of `struct save_state' that indicates
|
||||
|
@ -1656,7 +1988,7 @@ hppa_hpux_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
|||
{
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||||
|
||||
if (tdep->bytes_per_address == 4)
|
||||
if (IS_32BIT_TARGET (gdbarch))
|
||||
tdep->in_solib_call_trampoline = hppa32_hpux_in_solib_call_trampoline;
|
||||
else
|
||||
tdep->in_solib_call_trampoline = hppa64_hpux_in_solib_call_trampoline;
|
||||
|
@ -1689,7 +2021,8 @@ hppa_hpux_som_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
|||
|
||||
tdep->is_elf = 0;
|
||||
|
||||
tdep->find_global_pointer = hppa_hpux_som_find_global_pointer;
|
||||
tdep->find_global_pointer = hppa32_hpux_find_global_pointer;
|
||||
|
||||
hppa_hpux_init_abi (info, gdbarch);
|
||||
som_solib_select (tdep);
|
||||
}
|
||||
|
@ -1700,6 +2033,8 @@ hppa_hpux_elf_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch)
|
|||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||||
|
||||
tdep->is_elf = 1;
|
||||
tdep->find_global_pointer = hppa64_hpux_find_global_pointer;
|
||||
|
||||
hppa_hpux_init_abi (info, gdbarch);
|
||||
pa64_solib_select (tdep);
|
||||
}
|
||||
|
|
|
@ -273,6 +273,20 @@ hppa_symbol_address(const char *sym)
|
|||
else
|
||||
return (CORE_ADDR)-1;
|
||||
}
|
||||
|
||||
struct hppa_objfile_private *
|
||||
hppa_init_objfile_priv_data (struct objfile *objfile)
|
||||
{
|
||||
struct hppa_objfile_private *priv;
|
||||
|
||||
priv = (struct hppa_objfile_private *)
|
||||
obstack_alloc (&objfile->objfile_obstack,
|
||||
sizeof (struct hppa_objfile_private));
|
||||
set_objfile_data (objfile, hppa_objfile_priv_data, priv);
|
||||
memset (priv, 0, sizeof (*priv));
|
||||
|
||||
return priv;
|
||||
}
|
||||
|
||||
|
||||
/* Compare the start address for two unwind entries returning 1 if
|
||||
|
@ -529,15 +543,8 @@ read_unwind_info (struct objfile *objfile)
|
|||
obj_private = (struct hppa_objfile_private *)
|
||||
objfile_data (objfile, hppa_objfile_priv_data);
|
||||
if (obj_private == NULL)
|
||||
{
|
||||
obj_private = (struct hppa_objfile_private *)
|
||||
obstack_alloc (&objfile->objfile_obstack,
|
||||
sizeof (struct hppa_objfile_private));
|
||||
set_objfile_data (objfile, hppa_objfile_priv_data, obj_private);
|
||||
obj_private->unwind_info = NULL;
|
||||
obj_private->so_info = NULL;
|
||||
obj_private->dp = 0;
|
||||
}
|
||||
obj_private = hppa_init_objfile_priv_data (objfile);
|
||||
|
||||
obj_private->unwind_info = ui;
|
||||
}
|
||||
|
||||
|
@ -912,6 +919,7 @@ hppa32_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|||
write_register (19, gp);
|
||||
|
||||
/* Set the return address. */
|
||||
if (!gdbarch_push_dummy_code_p (gdbarch))
|
||||
regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
|
||||
|
||||
/* Update the Stack Pointer. */
|
||||
|
@ -952,6 +960,10 @@ hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|||
been pushed. */
|
||||
CORE_ADDR new_sp = 0;
|
||||
|
||||
/* Global pointer (r27) of the function we are trying to call. */
|
||||
CORE_ADDR gp;
|
||||
struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
|
||||
|
||||
/* Two passes. First pass computes the location of everything,
|
||||
second pass writes the bytes out. */
|
||||
int write_pass;
|
||||
|
@ -1033,7 +1045,13 @@ hppa64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
|
|||
if (struct_return)
|
||||
write_register (28, struct_addr);
|
||||
|
||||
gp = tdep->find_global_pointer (function);
|
||||
|
||||
if (gp != 0)
|
||||
write_register (27, gp);
|
||||
|
||||
/* Set the return address. */
|
||||
if (!gdbarch_push_dummy_code_p (gdbarch))
|
||||
regcache_cooked_write_unsigned (regcache, HPPA_RP_REGNUM, bp_addr);
|
||||
|
||||
/* Update the Stack Pointer. */
|
||||
|
|
|
@ -204,6 +204,9 @@ struct hppa_objfile_private
|
|||
struct hppa_unwind_info *unwind_info; /* a pointer */
|
||||
struct so_list *so_info; /* a pointer */
|
||||
CORE_ADDR dp;
|
||||
|
||||
int dummy_call_sequence_reg;
|
||||
CORE_ADDR dummy_call_sequence_addr;
|
||||
};
|
||||
|
||||
extern const struct objfile_data *hppa_objfile_priv_data;
|
||||
|
@ -235,4 +238,7 @@ extern struct minimal_symbol *
|
|||
hppa_lookup_stub_minimal_symbol (const char *name,
|
||||
enum unwind_stub_types stub_type);
|
||||
|
||||
extern struct hppa_objfile_private *
|
||||
hppa_init_objfile_priv_data (struct objfile *objfile);
|
||||
|
||||
#endif /* HPPA_TDEP_H */
|
||||
|
|
Loading…
Add table
Reference in a new issue